Волокно оптическое стандартное с низким пиком воды, с пониженной

чувствительностью к изгибам для систем связи E3 (G657A1/G652D) Long Distance

Одномодовое оптическое волокно с низким пиком воды «E3 (G657A1/G652D) Long Distance» является волокном с пониженной чувствительностью к изгибам. Волокно произведено из преформ, полученных методом осевого парофазного осеждения (VAD), с кварцевой сердцевиной, легированной германием. Полностью соответствует рекомендации ITUT G.652.D, а также соответствует и превосходит требования ITUT G.657.A1 по параметрам макроизгибных потерь и коэффициенту затухания. Является продукцией, произведенной в Российской Федерации, полностью удовлетворяющей требованиям Постановления Правительства РФ №719 от 17 июля 2015 г., Постановления Правительства РФ от 16.09.2016 г. №925 и при использовании в

Геометрические характеристики

Отклонение от концентричности	≤ 0,5
сердцевины по отношению к оболочке, мкм	
Диаметр оболочки, мкм	125±0,7
Некруглость оболочки, %	≤ 0,7
Диаметр вторичного покрытия, мкм	242,0±5,0
Собственный изгиб волокна, радиус кривизны, м	≥ 4
Отклонение от концентричности внешнего	≤ 12
покрытия по отношению к оболочке, мкм	<u> </u>

Оптические характеристики (двустороннее измерение)

Максимальный коэффициент затухания, дБ/км

на 1310 нм	≤ 0,324
на 1383 нм	≤ 0,324
на 1550 нм	≤ 0,181
на 1625 нм	≤ 0,204

MISL на длине волны 1310 нм / 1550 нм, дБ/км

1310 нм	≤ 0,324
1550 нм	≤ 0,184

MISL (Maximum Individual Segment Loss) – максимальный коэффициент затухания по всей длине катушки, измеренный методом «скользящего окна».

Зависимость коэффициента затухания от длины волны¹, дБ/км

1285-1330 нм (опорная 1310 нм)	≤ 0,03
1525-1575 нм (опорная 1550 нм)	≤ 0,02

Диаметр модового поля*, мкм

на 1310 нм	8,8-9,4
на 1550 нм	9,9-10,7

^{*} Значение на начале и конце катушки

Длина волны отсечки в кабеле (λсс), нм ≤ 1	260
--	-----

Коэффициент хроматической дисперсии, пс/ (нм*км)

на 1550 нм	≤ 18
на 1625 нм	≤ 22
Длина волны нулевой дисперсии (λ0), нм	1300-1324
Наклон дисперсионной характеристики в области нулевой дисперсии, пс/нм² км	≤ 0,092

Поляризационная модовая дис	сперсия FA ²	
Максимальная величина ПМД в во	олокне, пс/√км ≤ 0,2	

Асимметрия (различие в коэффициентах затухания при измерении с внутреннего и внешнего концов катушки), дБ/км

1310 нм	≤ 0,004
1550 нм	≤ 0,004

Нелинейность затухания (Point Discontinuity), дБ

	,	37711
1310 нм		≤ 0,03
1550 нм		≤ 0,03

кабеле отечественного производства позволяет получать 30% преференцию при закупках по 223-ФЗ относительно импортных аналогов. Двойное акрилатное покрытие волокна обеспечивает его высокую прочность и обеспечивает длительный срок службы. Волокно поддерживает работу в полном спектральном диапазоне в различных сетях доступа, включая FTTH, применимо в протяженных линиях связи. Изгибостойкость волокна и улучшенные параметры по затуханию дают преимущество в применении для городских сетей. Волокна полностью совместимы со стандартными одномодовыми волокнами, такими как E3 (G652d) без каких либо особенностей на сварных соединениях.

Эксплуатационные характеристики

Эффективный показатель преломления

на 1310 нм	1,466
на 1550 нм	1.467

Механические характеристики

Стойкость к коррозии в напряженном

Натяжение при перемотке волокна, ГПа

(другое усилие натяжения по запросу)	>1%
Сила снятия покрытия, Н	
Пиковое значение	1 – 8,9
Среднее значение	1 – 5

≥ 0,69

≥ 20

Затухание при изгибе

состоянии

Условия намотки	Длина	Прирост
	волны, нм	затухания, дБ
1 виток радиусом 10мм	1550	≤ 0,6
	1625	≤ 1,2
10 витков радиусом 15мм	1550	≤ 0,2
	1625	≤ 0,8

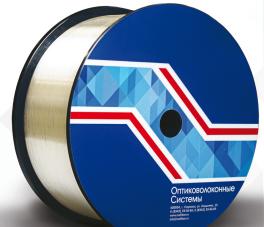
Параметры влияния окружающей среды

Прирост коэффициента затухания (дБ/км) на длинах 1310 нм, 1550 нм и 1625 нм

60°С ~ +85°С температурный цикл	≤ 0,03
+85°С температурное старение	≤ 0,03
+85°C/85% влажное тепло	≤ 0,03
+23°С погружение в воду	≤ 0,03

Поставляемые длины 3

25,2 км / 50,4 км	≥ 50%	
12,6 км - 23,1 км (кратность 2,1 км)	≤ 50%	
27,3 км - 48,3 км (кратность 2,1 км)	≥ 30 / ₀	


¹ Коэффициенты затухания внутри диапазонов длин волн не

отличаются от коэффициентов затухания на опорных длинах волн

более, чем на указанную величину

² ГОСТ Р МЭК 60793148 (Метод А, неподвижный анализатор)

³ Возможна поставка в других строительных длинах

Спецификация является рекламной информацией. Конкретные параметры оптоволокна определяются договором и ТУ.

430034, г. Саранск, ул. Лодыгина, соор.13 Телефон: 8 (8342) 33-36-88, 33-36-89 E-mail: info@rusfiber.ru, sales@rusfiber.ru www.rusfiber.ru